In this method quantitatire determinations are made by measuring the volumes of solutions of reacting substances which areequivalent to one another. If one of the solutions is of known strength then the concentration of the other solution is simply calculated. The method is capable of a high degree of accuracy provided:-
(I) tine standard solution (see below) is accurately propared
(2) the measuring apparatus (burettes, pipettes, etc.) is correctly graduated
(3) the indicator (see below) is sufficiently sansitive
(4) the personal technique is good.

Standard Solutions
The standard solution is the key to the method and may be defined as a solution which contains a kown amount of a substance in a known volume. Preparing an accurate solution is a task of some difficulty for it needs meticulous care in obtaining pure substances, in weighing, in dissolving and in checking.

The chief kinds of standard solution are:--
(1) Normal solutions
(2) Arbitrary standard solutions.
(3) Molar solutinns.
(4) Percentage solutions.

The first two are the ones usually employed in public health chemistry.

The Normal solution is one which contains the gram-oquivalent weight of the substance in one litre of the selution. By gram equivalent weight is meant the amount of the substance equivalent to one gram (actually 1.008 gm.) of replaceable hydrogen.

Consider the following reactions with hydrdehloric
aoid:-

$$
\begin{aligned}
& 2 \mathrm{HCl}+\mathrm{Ba}=\mathrm{BaCl}_{2}+\mathrm{H}_{2} \\
& 2 \mathrm{HCl}+2 \mathrm{Na}=2 \mathrm{NaCl}+\mathrm{H}_{2}
\end{aligned}
$$

In each case HCl contains one replaceable H or in grams $1+35.5=36.5 \mathrm{gms}$. Of HCl Jield I gram of hydrogen. A normal solution of HCl would therefore contain 36.5 gms ., 1.e. the M.W. in grams of HCl in l litre of solution. With sulphuric acid the case is different because this acid is dibasic:-

$$
\mathrm{H}_{2} \mathrm{Su}_{4}+\mathrm{Ba}=\mathrm{BaSO}_{4}+\mathrm{H}_{2}
$$

i.e.
or

$$
\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{M} . \mathrm{W} .=98) \equiv \mathrm{H}_{2}
$$

98 gms. of $\mathrm{H}_{2} \mathrm{SO}_{4}$ yield 2 grams f hydrogen and hence it is $\frac{98}{2}$ or $\frac{M . W}{2}$ grams of sulphuric acid which contain

1 gram of peplaceable hydrogen and hence a normal solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ contains 49 gms . of the acid in one litre.

With simple organic acids it is the hydrogen of the carboxyl group - COOH which is:alons replaceable by metals, so that the number of replaceable hydrogen atoms in an organic aoid is the same as the number of carboxyl groups. Note the following:-

Acetic acid
$\mathrm{CH}_{3} \cdot \mathrm{COOH}$ a litre of nornal solution contains the M.W. in gms.
oxalic acid

Citric acid
$\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O} \cdot(\mathrm{COOH})_{3} \cdot \mathrm{H}_{2} \mathrm{O}$ " " " " $" \frac{\mathrm{H}_{0} \mathrm{~W} .}{3}$ " "
With bases the chemical equivalent is that amount which will neutralize a gram-aquivalent of a monobasic acid or in other words that amoun's which will secure the replacement of one gram of hydrogen in an acid.

Thus:-

$\mathrm{NaOH}+\mathrm{HCl}$
40
36.5

Here 40 grams $\mathrm{NaOH} \equiv 36.5$ grams $\mathrm{HCl} \equiv 1$ gram of hydrogen
A normal solution of NaOH contains therefore 40 grams in one litre.

$$
\begin{gathered}
\mathrm{Ba}(\mathrm{OH})_{2}+2 \mathrm{HCl} \equiv \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
171
\end{gathered}
$$

Here 171 grams $\mathrm{Ba}(\mathrm{OH})_{2} \equiv 73$ grams $\mathrm{HCl} \equiv 2$ grams of hydrogen

$$
\therefore \frac{171}{2} \text { grams } \mathrm{Ba}(\mathrm{OH})_{2} \equiv 1 \text { gram of hydrogen }
$$

A normal solution of $\mathrm{Ba}(\mathrm{OH})_{2}$ contains therefore $\frac{171}{2}$ grams.
Similarly $\mathrm{Na}_{2} \mathrm{CO}_{3} \equiv 2 \mathrm{HCl}$, but $\mathrm{NaHCO}_{3} \equiv 1 \mathrm{HCl}$
The nature of the reaction upon which the volumetric analysis is based nust always be considered in calculating the strength of a normal solution for this strength may vary according to the conditions under which such roaction takes place. For examplo potassium permanganate as an oxidising agent behaves differently in acid and in alkaline solution. In acid solution it reacts thus:-

$$
2 \mathrm{KMO} \mathrm{M}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+50
$$

$\therefore 2 \mathrm{KMnO}_{4}=50 \equiv 10 \mathrm{H}$.
$\because \mathrm{KMn}_{4} \equiv 5 \mathrm{H}$

- a normal solution would contain $\frac{M . W}{5}$. in grams when used in acid solution.

In alkalino (or neutral) solution however, $2 \mathrm{KMnO}_{4}$ liberate 3 atoms of available oxygen, i.e.
$2 \mathrm{MnO}_{4}+3 \mathrm{HCO}_{2} \mathrm{~K}=2 \mathrm{~K}_{2} \mathrm{CO}_{3}+2 \mathrm{FHCO}_{3}+2 \mathrm{NHO}_{2}+\mathrm{H}_{2} \mathrm{O}$
$2 \mathrm{KinO}_{4} \equiv 30 \equiv 6 \mathrm{H}$
$\therefore \mathrm{KinO}_{4} \equiv 3 \mathrm{~K}$
a nomal solution would contain $\frac{M_{0}, W_{0}}{3}$. in grams when used in
alkaline (or neutral) solution.
These known strength solutions are used as normal solutions or as decinormal or centinormel or some other fraction of nommi. These are written thus IN or $1.0 \mathrm{~N}, \frac{\mathrm{~N}}{10}$ or $0.1 \mathrm{~N}, \frac{\mathrm{~N}}{100}$ or 0.01 N .

Arbitrary standard solutions are much used for ease of working. For example in analysing a water for its chlorine content it is more convenient to use the silver nitrate solution in a strength such that 1 c.c. of the AgNO_{3} solution $=1.0 \mathrm{ngm}$. of chlorine as chloride, than to use a normal solution for the calculation would then be sonewhat more laborious. The strength required for such a solution can be easily calculated by reference to tho equation which expresses the interaction of silver nitrate and a chloride.

Molar solutions arg those which contain the molecular weight of the substance in grans dissolved in water to make litre. It is clear from the foregoing that a molar solution may be the same as a normal solution as in the case oi HCl, but with sulphuric acid a molar solution is twice as strong as the normal solution and with citric acid three times as strong.

Percentage solutions. The strength of these is obvious. They are rarely usod in volumetric analysis, because the use of normal solutions makes the working of analyses and the calculation of the results vory much simplor onco the underlying principle is understood.

Calculation of posults whon using normal solutions.
The calculation is simple provided it is always remembered that equivalent volungs are being determined. One volume of $\mathbb{N} \cdot \mathrm{NaOH}$ will neutralize one volume of $\mathbb{H} . H C 1$, but this obviously does not mean that the weights of NaOH and of HCl in the particular volumes chosen are identical, for from the equation

$$
\mathrm{NaOH}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}
$$

it is clear that 40 grams of NaOH neutralize 36.5 grams of HCl .
As 1000 c.c. N.NaOH -1000 c.c. N.HCl
then 10,000 c.c. $0.1 \mathrm{~N} . \mathrm{NaOH}=1000$ c.c. $\mathrm{N} \cdot \mathrm{HCl}$
500 c.c. $2.0 \mathrm{~N} . \mathrm{T} \Omega O H \equiv 1000$ c.c. $\mathrm{N} . \mathrm{HCl}$
because $0.1 \mathrm{~N} . \mathrm{NaOH}$ contains one tenth and $2.0 \mathrm{I} . \mathrm{NaOH}$ contains twice the number of grams of alkali as on solution of NaOH .

Hence we have
volumg of alkali x the normality
of the alkali

Supposing in a titration 20 c .0 . of an acid of unknown normality ${ }^{2}$ requires $35 \mathrm{c} . \mathrm{c}$. of dooinormal alkali for noutralization, we the have

$$
\begin{aligned}
35 \times 0.1 & =20 \times x \\
x & =\frac{35 \times 0.1}{20}=0.275 \mathrm{~m}
\end{aligned}
$$

There is no newd in such a calculation to bother about atomie weights. These would only be required if there wan need to detormine the number of grams of HCl in the unjonom golution, Hers aga in the calculation is easy for we know that Hoj containg one roplaceable hydrogen and therefore a IN solution oontains 36.5 grams in 1 litre and hence a 0.175 N solution contains $36.5 \times 0.175=6.39$ grams of HCl in 1 iftre.

Mothods in Volumetric Analysis.
There are three main types:-
(1) Acidimetry and Alkalimetry.
(2) Oxidation and Reduction, for example in the use of potensum permanganate.
(3) Precipitation, for example the deteraination of ohlersde in water by precipitation with silver nitrate in tiandard solution.

Methods aro either direct or indirect. Fxamplas of the demer are the titration of oxalic acid with pormanganate or asmple acidimetry. Indirect methods would include such a onge ms the determination of $\mathrm{H}_{2} \mathrm{~S}$ in a solution: a measured vodume of atandind iodine known to be in excess of what is required to reaet with the $\mathrm{H}_{2} \mathrm{~S}$ is added and when reaction is complete the residual loate is determined by standard thiosulphate solution. Thín is onliel back titratica.

Indicators.
In volumetric analysis indicators are requirad to signal the complation oi a reaction. Types of such indieators ares-
(1) potassium permanganate - here one of the reaoting aubetayeen in the titration acts as its own indioator.
(2) potassium chromate - this is added in amall anount in the titration of chlorides with silver nitrate, as in wates annlysis.
(3) mothyl orange, phenol phthalain, litmus and othogs in the titration of acias and alkalis.
"Rulgs of Titration" in Acidinetry and Alknlimatyy
(1) Strong acid with strong base - any indicator:
(2) Stiong acid with weak base - methyl orango.
(3) Weak acid with strong base - phenol phthalein.
(4) Weak acid with weak base - should never be done.

The principles underlying these rules are dealt with in the notes on hydrogen ion concentration.

Noutrality to Indicators and Equivalence.
It is important to note that neutrality to indicators and equivalence aire not necessarily identical. If $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is titrated with HCl using nhonol phthalein as indicator, it is found that the indicator beconas colourless (acid) before all the carbonate has begn neutralized to NaCl whereas if mothyl orange is used neutrality .is not indicated until there has been added an amount of HCl twice that required to signal neutrality with phenol phthalein. The explanation of this is found on considering the equations:-

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{NaHCO}_{3}-\text { phenol phthalein } \\
& \mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl}=2 \mathrm{NaCl}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}-\text { methyl orange }
\end{aligned}
$$

The reaction procoods in two stages - the acid carbonate or bicarbonate is first formed and phenol phthalein indicates acidity with sodium bicarbonate. Methyl orange on the othea hand still shows alcalinity with the bicarbonate and only changes colour when all the bicarbonate has boen decomposed.
(Soe Hydrogen Ion Concentration)

Other Examplos of Volumetric Analysis.
All determinations should, if possiblo, be done three times and the mean of the rosults used in the calculation.

1. (A) is a watery solution of NaOH . By neans of the decinormal acid provided, using methyl orange as indicator, determine:-
(a) the normality of solution (A)
(b) the percentage strength
(c) the proportion of water which must be added to convert it into a 0.025 N sulution.

Pipette 20 c.c. $0^{\prime}(A)$ into a white poreelain dish. Use a 20 c.c. pipette, allow it to drain against the side of the dish and do not blow out its contents. Add a few drops of methyl orange. From a burette run in the standard acid, whilst stirring with a glass rad until there is just apparent a colour change in the indicator. The first titration may be done quickly to obtain an approximate result, but this must be followed by three titrations carefully performed. The mean of these three titrations is used for the calculation.

Calculations.
(a) Let $X=$ the normality of (A)

Assume that 18.8 c.c. is the mean of the three titration figures
Then:-

$$
\begin{aligned}
X \times 20 & =0.1 \times 18.8 \\
\therefore X & =0.094 . \mathrm{N}
\end{aligned}
$$

(b) As NaOH is nonovalent therofore l litro of a Normal solution will contain the tram molecular weight, i.e. 40 grams (Na $=23$).
Since 1 litre of a 1.0 N solution contains 40 grams
.. 1 " " "0.094 N $n \quad$ " 3.76 "
\therefore the percentage strength is 0.376%
(c) To find the dilution notded to convert a 0.094 N solution into a 0.025 IN solution:-

A 0.094 solution contains 0.094×40 grams per litre
and a $0.625 \mathrm{~N} \quad \mathrm{n} \quad 0.025 \times 40 \mathrm{n} \quad \mathrm{n}$
$\therefore \frac{.025}{.094}$ of a litre of the solution (A) contains the amount of
NaOH in 1 litre of a 0.025 N solution.

Hence $\frac{.025}{.094}$ of a litre of (A) must be diluted to a volume of 1 litre
with water
i.e. the proportion is:-
$\frac{.025}{.094} \quad: \quad \frac{.094-.025}{.094}$
or 25 : 69
\therefore The addition of 69 c.c. of water to 25 c.c. of solution (A)will yield a 0.025 N solution.

To determine the strength of solution of barium chloride, given standard solutions of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and of HCl. This may be dons by precipitating the Ba as caibonate by adding a measured quantity of the $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution sufficient to provide an excess so as to ensure complete procipitation, filtering off the barium carbonate and then duterminine tho excess of carbonate by titration of the filtrate with the standard acid.

$$
\mathrm{BaCl}_{2}+\mathrm{Na}_{2} \mathrm{CO}_{3}=\mathrm{BaCO}_{3}+2 \mathrm{NaCl}
$$

Pipette 20 c.c. of the BaCl_{2} solution into a bsaker. Add 25 c.e. of the $0.1 \mathrm{~N} \cdot \mathrm{Na}_{2} \mathrm{CO}_{3}$ (experiment must decide whether this does provide excess of $\mathrm{Na}_{2} \mathrm{CO}_{3}^{2}$). Stir, allow to stand some minutes and then filter off the BaCO_{3}. Wash out the beaker several times with distilled water and pour the washings on to the filter.

Titrate the filtrate with $0.1 \mathrm{~N} . \mathrm{HCl}$ using methyl oxange as indicator.

Supposing 9.4 c.c. is the moan of three titrations. Therefore there is loft in the filtrate an amount of alkali equal to the amount of alkali in 9.4 c.c. of $0.1 \mathrm{~N} \cdot \mathrm{Na}_{2} \mathrm{CO}_{3}$.

20 ce fad golutw 2 ram

$$
0.01 \text { r theosulph }=19
$$

$$
n_{a_{2}} \sin _{3}+1_{2}=n_{a_{2}} 1+n_{a_{2}} s_{2} \theta_{b}
$$

sh refigice 0.01 N . thisuntruah zocc. Nal.

$$
x=\text { nomial if } J
$$

$$
\begin{aligned}
x \times 20 & =19 \times 0.01 \\
20 x & =19 \times 0.81 \\
x & =\frac{19 \times 01}{2}=0095 \mathrm{~N}
\end{aligned}
$$

Caloulation:- Let $K=$ the normality of the BaCl_{2} solution then 20 c.c. of the $\mathrm{BaCl}_{2} \equiv 25-9.4 \mathrm{c} . \mathrm{c}$. of $0.1 \mathrm{~N} \cdot \mathrm{Na}_{2} \mathrm{CO}_{3}$ because 9.4 c.c. Was the amount of 0.1 N.Na2CO3 not used up in converting the Ba into carbonate.

Therefore $20 \times X=(25-9.4) \times 0.1$

$$
x=\frac{(25-9.4) \times 0.1}{20}=0.078
$$

Hence the BaCl_{2} solution is 0.078 Normal.
To express this in terms of grams per litre:-
Barium is divalent and therefore a normal solution would contain the $\frac{\text { M.W. grams in one litre. This M.W. works out at }}{2}$
208.29 $/ \overline{\mathrm{Ba}}=137.37 \mathrm{Cl}=35.467$.

Therefore 1 litre of normal BaCl_{2} contains $\frac{208.29}{2}=104.145 \mathrm{gms}$.
an̉ 1 litire of $0.078 \mathrm{~N} . \mathrm{BaCl}_{2}$ contains 104.145×0.078 gms.
$=8.123 \mathrm{gms}$.
3.

Solution C contains 2.27 grans of a sample of iodine per litre. Given 0.01 N sodium thiosulphate ($\mathrm{Na} \mathrm{LS}_{2} \mathrm{O}_{3}$) determine the percentage purity of the iodine.

The reaction between iodine and sodium thiosulphate $1 s$ frequently used in volumetric analysis thus:-
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2}=2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$
The ioding is converted into colourless sodium iodide. The ond point is deterninod by moans of starch which in the presence of Iree iodine gives a blue colour due to iodide of starch.

Into a small flask pipette say 20 c.c. of the iodine solution. Form a burette add the thiosulphate slowly until only a faint iodine colour romains. Then add a few drops of starch solution when a blue colour appears. (Note that the end point is sharpest when the addition of starch is dela dill nearly the end of the titration). Continus adding the thiosulphate drop by drop, mixing between each nddition, until the blue colour disappears. Repeat three times and take the noan of the ditierminations.

Calculation.

Let $K=$ nomality of the iodine solutson and assume that 19.0 c.c. of the thiosulphate are used in the titrntion of 20 c.c. of the iodine solution.

Thus:-

$$
\begin{aligned}
X \times 20 & =19.0 \times 0.01 \\
\therefore X & =0.0095 \mathrm{~N}
\end{aligned}
$$

Now 1 litre of a IVormal solution of iodine (A.W. $=$ 127) contains 127.0 gms . of iodine
. 1 litre of solution Contains $127 \times .0095 \mathrm{gms}=1.2065 \mathrm{gmg}$.

From this figure taken in conjunction with the fact that 1.27 grams of the particular sample of iodine was present in a litre of solution C, it is clear that the iodine was impure and its percentage purity san thus be calculated.

$13.8 \mathrm{~cm} \mathrm{H}_{2} \operatorname{si4} \mathrm{O} \cdot 1 \mathrm{~N} \equiv 2 \sin \mathrm{NaOlA} x \mathrm{~N}$

$$
\begin{array}{rlrl}
25 x & =17.8 \times 0.1 & 250.1 .38 \\
x & =\frac{17.8 \times 0.1}{25} & \frac{125}{20} \\
& =0.0552 \mathrm{~N}
\end{array}
$$

Practical Exercises.

(1) Estimate the CO_{2} content of the Laboratory Air [Pettenkoffer's Process].
(a) Fill the flask provided with water - inserting stopper. lieasure the volume of water used and thus determine the volume of the bottle, which is the volume of air to be used in the analysis.
(b) Take $100 \mathrm{cc} . \mathrm{s}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ solution, and divide it into to portions of $50 \mathrm{cc} . \mathrm{s}$ each. Quickly add one portion to the flask [thus displacing $50 \mathrm{cc} . \mathrm{s}$ of air], re-stopper and place the jar aside for one hour, occasionally rolling it gently to ensure absorption of CO_{2}.

Meanwhile estimate the alkalinity of the other $50 \mathrm{cc} . \mathrm{s}$ of
$22.1 \mathrm{Ba}(\mathrm{OH})_{2}$, by titration with a standard oxalic acid solution $[1 \mathrm{cc} .=0.5$ of CO_{2} at $\left.\mathrm{N} \cdot \mathrm{T} . P_{.}\right]$, using phenolphthalein as indicator.
(c) At the end of the hour, titrate the unneatralized $\mathrm{Ba}(\mathrm{OH})_{2}$ in the flask with oxalic acid solution and phenolphthalein. It is permissible to perform the titration in the jar itself.
(d) Note the temperature and barometric pressure of the laboratory air
(e) Calculate the percentage of CO_{2} in the air.

Example.
(a) Suppose the volume of air in the flask as measured was 3050 cess. After deducting $50 \mathrm{cc} . \mathrm{s}$, the volume occupied by the $\mathrm{Ba}(\mathrm{OH})$, the volume of air is $3000 \mathrm{cc.s}$ at the temperature and pressure of the laboratory, which, for example, may be $15^{\circ} \mathrm{C}$ and 740 mins . respectively. Hence at N.T.P. the volume of the $3000 \mathrm{cc.s}$ of air will be:-
$3000 \times \frac{273}{288} \times \frac{740}{760}=2768 \mathrm{cc} . \mathrm{s}$ at N.T.P.
(b) Suppose $50 \mathrm{cc} . \mathrm{s}$ of $\mathrm{Ba}(\mathrm{OH})$ solution required $24 \mathrm{cc} . \mathrm{s}$ of standard oxalic acid solution, and that ${ }^{2}$ the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution in the flask at the end of one hour required $20 \mathrm{cc} . \mathrm{s}$ of oxalic acid solution:-

Then $24-20=4$ ce.s of standard oxalic acid solution is equivalent to the CO_{2} in $2^{\prime} 768$ cc.s of air.

Since 1 cc. standard oxalic acid solution $=0.5 \mathrm{cc} \cdot \mathrm{st} \mathrm{CO}_{2}$

$$
\text { .. } 4 \text { cc.s. } " \quad " \quad H=2.0 \text { cc.s CO } 2
$$

-. Percentage of CO_{2} in the air is:-

$$
\frac{2}{2768} \frac{100}{0.072} \text { per cent. } 50.0 .50 .
$$

II. Of the waters (A) and (B), one is supposed to contain poisonous metals, and the other has been chlorinated on account of sewage pollution. Test for poisonous metals, and if found, estimate the amount of metal present.

Test for free chlorine as follows:-
Put $100 \mathrm{cc} . \mathrm{s}$ of the water into a Nessler glass and add 1 cc . of Ortho-tolidine solution. Mix and allow to stand at least five minutes. small amounts of free chlorine give a yellow and larger amounts an orange colour.

Make a quantitative estimation by comparing the colour obtained with those of the standards provided. The standards are mixtures ($100 \mathrm{cc} . \mathrm{s}$) of CuSO_{4} and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, the colours of which match those of varying amounts of chlorine when treated with ortho-tolidine.

It required 22.200 theutateze srec Reifth $1.6 C=0.55$
I. (A) is a solution of NaOH in water. By means of the decinormal HCl provided, using methyl orange as indicator, deter İhe:-
(a) the normality of solution (A)
(b) the percentage strength
(c) the proportion of water which must be added to (A) to convert it into a 0.025 N , solution.

What differences (if any) would there be in your answers to (a), (b) and (c) if (A) were a solution of $\mathrm{Na} 2^{\mathrm{CO}_{3}}$ and you had obtained the same titration figures? Would there be any differences if (A) had been NaHCO_{3} ? Supposing the decinormal acid had been sulphur would there have been any difference in the titration figures?
2. Estimate the strength of the given solution (B) of barium chloride. A.W. of $\mathrm{Ba}=137$.
(Precipitate the Ba solution, say $20 \mathrm{c} . \mathrm{c} .$, with excess of the S.S. of sodium carbonate, say $25 \mathrm{c} . \mathrm{c}$. Filter off the Ba carbonate and titrate excess of sodium carbonate).
3. Solution (C) contains 1.27 grams of iodine per litre. Given 0.01 N sodium thiosu; phate, determine the percentage purity of the iodine.

255
23.4
$\frac{25 \omega_{5}}{15 \mathrm{~m}} \equiv \mathrm{BuCl}_{2}$
$10 \mathrm{~m} .0 . \mathrm{NN} . \mathrm{NH}_{2} \mathrm{log}$

25m Invins $\underline{C} \equiv 235 \mathrm{~m} 0 \cot \mathrm{~N}$. This.

$$
\begin{aligned}
& \text { LIt } x=\text { Nmalits of } S \\
& 25 x=23.5 \times 0-7 \\
& x=\frac{23.5}{25} \times 0-07=25 . \cdot \begin{array}{l}
127094 \\
\frac{225}{250}
\end{array} \frac{12094}{508} \\
& x=0.0094 \mathrm{~N} \\
& \text { Gratimec is } 0.0044 \mathrm{~W}
\end{aligned}
$$

I lista of N I otrins entoumi 127 uns

$$
\begin{aligned}
& 1 \cdots-2094 \mathrm{~N} \quad 127 \times 0.0094=1.194 \mathrm{gms} . \\
& \frac{1.10}{1.2 \%}=C_{0}^{100} \text { Purity }
\end{aligned}
$$

Practical III

1. Compare the pH of (i) tap water, (ii) distilled water, (iii) boiled distilled water, (iv) cold boiled distilled water after expired air has been blown through it.
2. Given 0.1 N HCl and acetic acid, make dilutions of 10 cc e each from 0.1 to 0.0001 N and compare the pH of the corresponding dilutions of the two acids, as accurately as you can.

Approximately:-

$$
\begin{aligned}
& 0.1 \mathrm{~N} \mathrm{HCl} \\
& 0.01 \mathrm{~N} \mathrm{HCl} \\
& =\mathrm{pH} 1.0 \\
& 0.1 \mathrm{~N} \text { acotic }
\end{aligned}=\mathrm{pH} 2.8720 \text { pH } 3.37
$$

3. Similarly, compare the titrable acidity of the corresponding dilutions. (Use 10 cc.$)$
4. Put up two series of 6 tubes each containing 10 ce. of 0.1 N acid, HCl in one series and acetic acid in the other. Add $0.2 \mathrm{cc} . \mathrm{N} \mathrm{NaOH}$ to the first pair of tubes, $0.4 \mathrm{cc} . \mathrm{N}$ alkali to the second pair and so on. Compare the pH of each series and draw a curve to show the course of events.
5. Compare the pH of the 'neutral' solutions of sodium chloride, sodium cyanide and ammonium chloride. Explain your findings. (Phenol Redj)

Thymol Blue	$1.2-2.8$
Bromo-phenol Blue	$2.8-4.6$
Methyl Red	$4.2-6.3$
Bromo-cresol Green	$3.6-5.2$
Bromo-cresol Purple	$5.2-6.8$
Bromo-thymol Blue	$6.0-7.6$
Phenol Red	$6.8-8.4$
Cresol Red	$7.2-8.8$
Thymel Blue	$8.0-9.6$

D:P.H.

Practical IV

1. Determine the amounts of sodium carbonate and of bicarbonate in the given solution (A). Given $\mathbb{N} / 10$ acid and indicators. Use $20 \mathrm{c} . \mathrm{c}$.
2. Titrate 2. c.c. of the $\mathrm{NH}_{4} \mathrm{OH}$ solution (B) with $\mathbb{N} / 10 \mathrm{HCl}$ in the presence of methyl orange; then titrate another $20 \mathrm{c} . \mathrm{c}$. in the presence of phenol phthalein.
Titrate 2: c.c. of the acetic acid solution (C) with $\mathbb{N} / 10 \mathrm{NaOH}$ in the presence of phenol phthalein; then titrate another $20 \mathrm{c} . \mathrm{c}$. in the presence of methyl orange.
Foserve the differences in the titrations and try to explain these differences.
3. Given 0.IN HCl and O.IN acetic acid, make dilutions of 100 c.c. each from $0.1 \mathbb{N}$ to 0.0011 and compare their titrable acidity using phenol phthalein and methyl orange in separate titrations for each. (Do each titration in duplicate using $20 \mathrm{c} . \mathrm{c}$.). This experiment shows that to obtain accuracy a suitable indicator must be chosen.
4. The neutralisation of sodium carbonate by hydrochloric acid may be represented by the following equation.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl}=2 \mathrm{Na}+\mathrm{H}_{2} \mathrm{CO}_{3}\left[\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{3}\right]
$$

Actually, however, the neutralisation takes place in two stages, the carbonate first being converted quantitatively into bicarbonate, the latter forming sodium chloride on the addition of a further quantity of acid. The neutralisation process may be represented by the following two equations, therefore
(1) $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{NaHCO}_{3}$
(2) $\mathrm{NaHCO}_{3}+\mathrm{HCl}=\mathrm{NaCl}+\mathrm{Na}_{2} \mathrm{CO}_{3}$

It will be seen then that exactly twice as much acid is required to convert the carbonate into chloride as is required to convert it into bicarbonate. If therefore we could stop the addition of acid at the point when all the carbonate had been converted into bicarbonate we should get a titration figure equal to half the amount of acid required for complete neutralisation. In actual practice it is found that the indicator phenol phthalein, which changes oolour from pink to colourless at about pH 8.3, satisfactorily marks the end point of equation (1). This is due to the fact that even a weak solution of the base, sodium carbonate, gives a solution more alkaline than pH 8.3 and therefore turns phenol phthalein red, whereas a concentrated solution of sodium bicarbonate is not as alkaline as this and hence in bicarbonate solutions phenol phthalein is colourless.

If then a sodium carbonate solution be neutralised with hydrochloric acid using phenol phthalein as indicator we shall get a titration value of only half that which would be obtained in the presence of methyl orange. [This indicator changes colour about pH 4.0]

By making use of these two indicators it is not only possible to noutralise the carbonate in two definite stages, represented by equations (1) and (2), but it is also possible to determine the amounts of carbonate and bicarbonate present in a mixture of these two substances.

Dotermination f carbonate in a carbonate-bicarbonate mixture.
Take 20 c.c. of the mixture, add a drop or two of phenol phthalein. As carbonate is present the colour turns pink. Run in $\mathrm{N} / 10 \mathrm{HCl}$ from a burette till the pink colour is just discharged. At this point all the carbonate has been converted into bicarbonate, as equation (1), and therefore the total carbonate present will be equivalent to twice this value.

Suppose using phenol phthalein as indicator
$20 \mathrm{c} . \mathrm{c}$. of mixture required $9 \mathrm{c} . \mathrm{c}$. of $\mathrm{N} / 10 \mathrm{HCl}$
Then " " $"$ " \quad " $\times 2 \mathrm{c} . \mathrm{c} \cdot \mathrm{N} / 10 \mathrm{Na}_{2} \mathrm{CO}_{3}$
. Normality of carbonate in mixture $=\frac{9 \times 2 \times 0.1}{20}=0.09$
The equivalent weight of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1}{2} \mathrm{M} \cdot \mathrm{W} \cdot=\frac{23 \times 2+12+16 \times 3}{2}$

$$
=\frac{106}{2}=53
$$

Determination of bicarbonate in a carbonate-bicarbonate mixture.
This determination should be carried out in two ways.
(a) Continue with the sample already neutralised to the phenol phthalein end point. As this indicator is now colourless a second indicator, such as methyl orange, may be added and the titration continued to the end point of the latter.

Suppose a further quantity of 21 c.c. of $N / 10 \mathrm{HCl}$ is required to reach the methyl orange end point.

Then this titration figure represents the neutralisation of all the original bricarbonate and of half the original. carbonate of the solution, for by the previous titration, using phenol phthalein as indicator, the carbonate has been converted into bicarbonate.

$$
20 \text { c.c. of mixture } \equiv 21 \text { c.c. } \begin{aligned}
& \text { O.IN HCl to neutralise solution } \\
& \\
& \text { from the phenol phthalein to the } \\
& \text { methyl Arange end point }
\end{aligned}
$$

- $21 \mathrm{c} \cdot \mathrm{c} \cdot 0.1 \mathrm{NHCl} \equiv \operatorname{all} \begin{array}{r}\text { original bicarbonate } \\ \text { carbonate) }\end{array}+\frac{1}{2}$ (original $20 \mathrm{c} \cdot \mathrm{c}$ (mixture
. bicarbenate of $20 \mathrm{c} . \mathrm{c}$. mixture $\equiv 21-9=12 \mathrm{c} \cdot \mathrm{c} \cdot 0.1 \mathrm{~N} \mathrm{HCl}$
\therefore normality of bicarbonate $=\frac{12 \times 0.1}{20}=0.06$

As the acid of bicarbonates, viz. $\mathrm{H} . \mathrm{HCO}_{3}$, has only one replaceable H. its equivalent weight equals its molecular weight.
\therefore Equivalent weight of $\mathrm{NaHCO}_{3}=23+1+12+48=84 \mathrm{~g}$.
\therefore I litre of $\mathrm{N}^{2} \mathrm{NaHCO}_{3}$ solution contains 84 g .
and 1 " " 0.06 N . " " 84 XX 0.06 g .
-100" " " " $10 \frac{84 \times 0.06}{10}=0.504 \mathrm{~g}$.
(b) Alternatively the bicarbonate may be estimated by taking a fresh 20 c.c. quantity f the mixture and titrating this straight away to the methyl range end point and deducting from this value twice that obtained by the previous phenel phthalein titration.

Students should try both these meth ds.

Practical II.

-

1. Estimation of Free Oxalic Acid COOH ${ }_{\mathrm{COOH}} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
oxalate $\int_{\text {COOK }}^{\mathrm{COOn}} \cdot \mathrm{H}_{2} \mathrm{O}$ in a solution.

Calculate the amounts of each in grams per litre.
You are given $\mathbb{N} / 10 \mathrm{KinO}_{4}, \mathrm{~N} / 10 \mathrm{NaOH}$, and conc, $\mathrm{H}_{2} \mathrm{SO}_{4}$
Method. Determine:-
(1) The normality of the total oxalate radicle Coo- that is Pres oxalic acid plus K - oxalate.

This is performed by titrating a volume of the solution with $\mathrm{N} / 10 \mathrm{KHO}_{4}$ in the presence of strong $\mathrm{H}_{2} \mathrm{SO}_{4}$.

The $\mathrm{H}_{2} \mathrm{SO}_{4}$ converts the K-oxalate into its equivalent of free oxalic acid, which along with the free oxalic acid originally in tho solution is to be oxidised by the KMin_{4}; obviously then, the total oxalate radicle in the solution is estimated by the KinO_{4} titration
2 H When $\mathrm{O}_{4}+{ }_{4}^{3} \mathrm{H}_{2} \mathrm{SO}_{4}=2 \mathrm{MISO}_{2}+2 \mathrm{MnSO}_{4}+50$ (atomic)

$$
5 \int_{\mathrm{COOH}}^{\mathrm{COOH}^{5}}+5 \mathrm{O} \text { (atomic) }=10 \mathrm{CD}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

For example. Suppose 20 cc. of solution after adding $\mathrm{H}_{2} \mathrm{SO}_{4}$ required 25 cc . of $0.1 \mathrm{~N} \mathrm{KNHO}_{4}$. The normality of total oxalate radicle (X) is then found by the equation:-

$$
\begin{aligned}
20 \times X & =25 \times 0.1 \\
X & =\frac{25 \times 0.1}{20} \\
& =.125 \mathrm{~N}
\end{aligned}
$$

(ii) Determine the normality of the free oxalic acid.

Another volume of the solution is titrated by $\mathrm{N} / 10 \mathrm{NaOH}$, using phenol phthalein as indicator.

This is an ordinary acid-base reaction. The NaOH reacts only with fires oxalic acid, not at all with K-oxalate.

$$
\left.\right|_{\mathrm{COOH}} ^{\mathrm{COOH}}+2 \mathrm{NaOH}=\int_{\mathrm{COONa}}^{\mathrm{COONa}+2 \mathrm{H}_{2} \mathrm{O}, ~}
$$

FA2 example. Suppose 20 cc. of solution was neutralised by is cc. of IJ/ 10 NaOH , the nemality of the free oxalic acid is then found by the equation:-

$$
\begin{aligned}
20 \times X & =15 \times 0.1 \\
X & =0.075 \mathrm{~N}
\end{aligned}
$$

(iii) Since the normality of total oxalate is known from (i), and that of free oxalic aoid from (ii), the normality of K-oxalate is equal to $[(1)-(1 i)\rangle=.125-.075=0.050 \mathrm{~N}$
(i) Determination of normality of total oxalate radicle.

Into a conical flask pipette accurately 20.c.c. of solution. Add approximately $5 \mathrm{c} . \mathrm{c}$. of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ (not HCl nor HNO_{3}) mititithm
Support the flask on a tripod, and heat tho flask to nearly boiling over a Bunsen burnor.

Run in $N / 10 \mathrm{KMnO}_{4}$ from a burette, shaking after each addition until a permanent pink colour is obtained. Koop the solution
over a small flame throughout the titration.
Observe the amount of $\mathrm{N} / 10 \mathrm{NinO}_{4}$ used.
Repoat at least twice and avorage the roadings.
Calculate the normality of total oxalate radicle.
(ii) Determination of normality of free oxalic acid.

Into a confeal flask or dish pipette 20 c.c. of solution. Add a few drops of phenol phthalein.
Run in $N / 10 \mathrm{NaOH}$ from a burette until a pink colour is obtained.
Observe the amount of $\mathbb{N} / 10 \mathrm{NaOH}$ used.
Repeat adeast twico and avorage the readings.
Calculato the normality of tho froo oxalic acid.
(iii) Calculate the strongth in grams por litwe of froe oxalic acid and K-oxalate from the molecular formulae givon.
2. Estimate the 'Volume Strength' of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.

The 'Volume Strength' is the volume of oxygen yielded by one volume of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.
A.g. if 5 c.c. of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution yield $45 \mathrm{c} . \mathrm{c}$. of oxygen,

$$
\text { V.S. }=\frac{45}{5}-9
$$

if 2 litres" " " " 10 litres of oxygen,

$$
\text { v.s. }=\frac{10}{2}=5
$$

You are given $\mathrm{N} / 10 \mathrm{NinO}_{4}$, and dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Method.
(i) This is an oxidation reaction: but in this case during the reaction, atomic oxygen is provided by KMnO_{4} which combines with atomic oxygen from the $\mathrm{H}_{2} \mathrm{O}_{2}$, to yield molecular (gaseous) oxygen. Actually one half of the oxygen yielded comes from the KnnO_{4}, and the other half from the $\mathrm{H}_{2} \mathrm{O}_{2}$ as shown by the equation:

$$
\begin{aligned}
2 \mathrm{KnO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4} & =2 \mathrm{KHO}_{4}+2 \mathrm{MnSO}_{4}+50 \text { (atomic) } \\
5 \mathrm{H}_{2} \mathrm{O}_{2} & =5 \mathrm{H}_{2} \mathrm{O}+50 \text { (atomic) }
\end{aligned}
$$

and $50\left(\right.$ from $\left.2 \mathrm{KinO}_{4}\right)$ plus 50 (from $\left.5 \mathrm{H}_{2} \mathrm{O}_{2}\right)=5 \mathrm{O}_{2}$
(ii) Determine the normality of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution.

This is performed by titrating a volume of the $\mathrm{H}_{2} \mathrm{O}_{2}$ (usually $5 \mathrm{c}, \mathrm{c}_{\mathrm{c}}$) suitably diluted with distilled water, in the presence of $\mathrm{H}_{2} \mathrm{SO}_{4}$ (Not HEl, nor HNO_{3}).
For example: Suppose 5 c.c. of $\mathrm{H}_{2} \mathrm{O}_{2}$ solution required 40 ce. of $\mathrm{H} / 10 \mathrm{ijinO}_{4}$
Then $5 \times X \quad 0 \quad 40 \times 0.1$

$$
\begin{aligned}
\therefore \times\left(\text { normality of } \mathrm{H}_{2} \mathrm{O}_{2}\right) & =\frac{40 \times 0.1}{5} \\
& =0.8 \mathrm{~N}
\end{aligned}
$$

(iii) The volume strength can bo estimated from the normality by using the following facts:-
A normal solution of oxygen is one in which l litre of solution contains 8 grams of oxygen (which is equivalent to 1 II atom)

- A normal solution of $\mathrm{H}_{2} \mathrm{O}_{2}$ is one in which 1 litre yields 8 grams of oxygen (which is equivalent to 1 H atom).

The molscular weight of all gases at N.T.P. occupy 22.4 litres
$\therefore 32$ gms. of oxygen $\left(\mathrm{O}_{2}=2 \times 16\right)$ at " \quad " 22.4 "

- 8 " " " " " 0.6 "
that is 1 iitre of 1 N oxygen solution contains 5.6 litres that is 1 litre of $1 \mathrm{NH} \mathrm{H}_{2}$ solution yields 5.6 oxygen
$\therefore 1$ litre of 0.8 N (i.e. normelity found) yields
5.6×0.8 iitres
$=4.48$ litres
Since 1 litra of this $\mathrm{H}_{2} \mathrm{O}_{2}$ solution would yield 4.48 litres
\therefore its volume strength is $\frac{4.48}{1}=4.48$

Note The strength of the $\mathrm{H}_{2} \mathrm{O}_{2}$ solution in grams per litre may be determined from the normality, e.g.

Since $\mathrm{H}_{2} \mathrm{O}_{2}=\mathrm{H}_{2} \mathrm{O}+\mathrm{O}$
$\therefore 16 \mathrm{gms}$. of oxygen are yielded by 34 gms . of $\mathrm{H}_{2} \mathrm{O}_{2}$
$\therefore 8$ " \quad " \quad " \quad " 17 gms. of $\mathrm{H}_{2} \mathrm{O}_{2}$
i.e. 1 litre of $1 \mathrm{~N} . \mathrm{H}_{2} \mathrm{O}_{2}$ solution contains $17 \mathrm{gms} \cdot \mathrm{H}_{2} \mathrm{O}_{2}$

Prectionl Procedure to Question 2.

To a conical flask add approximately 100 c.c. distilled $\mathrm{H}_{2} \mathrm{O}$ Pipette accurately 5 c.c. $\mathrm{H}_{2} \mathrm{O}_{2}$ solution into the water. Add roughly 30 c.c. of dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Do not heat the flask. (Compare with oxalates)
Run in $\mathrm{T} / 10 \mathrm{KinO}_{4}$ from burette with continual shaking till a permanent pink colour is obtained.
The solution becomes hot during the titration.
Observe the burette reading.
Perform at least two note titrations and average the readings. Calculate the normality and volume strength. 5 CC. $\mathrm{H}_{2} \mathrm{O}_{2} \mathrm{req}$. 6 ec Km no al
3. Solution (C) contains 2.48 gms. of a sample of sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, per litre
Determine the percentage purity of the sodium thiosulphate by means of the 0.01 N iodine solution.

The method and practical procedure are the same as those detailed for determining the percentage purity of a sample of iodine by means of standard sodium thiosulphate solution.
(See Practical I, Question 3).
$\mathrm{Na}=23, \mathrm{~S}=32,0=16, \mathrm{H}=1$

XUMA, A.B., Papers

PUBLISHER:

Publisher:- Historical Papers Research Archive
Location:- Johannesburg
©2013

LEGAL NOTICES:

Copyright Notice: All materials on the Historical Papers website are protected by South African copyright law and may not be reproduced, distributed, transmitted, displayed, or otherwise published in any format, without the prior written permission of the copyright owner.

Disclaimer and Terms of Use: Provided that you maintain all copyright and other notices contained therein, you may download material (one machine readable copy and one print copy per page) for your personal and/or educational non-commercial use only.

People using these records relating to the archives of Historical Papers, The Library, University of the Witwatersrand, Johannesburg, are reminded that such records sometimes contain material which is uncorroborated, inaccurate, distorted or untrue. While these digital records are true facsimiles of paper documents and the information contained herein is obtained from sources believed to be accurate and reliable, Historical Papers, University of the Witwatersrand has not independently verified their content. Consequently, the University is not responsible for any errors or omissions and excludes any and all liability for any errors in or omissions from the information on the website or any related information on third party websites accessible from this website.

This document is part of the archive of the South African Institute of Race Relations, held at the Historical Papers Research Archive at the University of the Witwatersrand, Johannesburg, South Africa.

